
MARKET-BASED COMPLEX TASK ALLOCATION FOR MULTIROBOT
TEAMS

Robert Zlot* and Anthony Stentz
The Robotics Institute, Carnegie Mellon University

Pittsburgh, PA, 15213

ABSTRACT

In order for a team of autonomous robots to per-
form a complex mission effectively, an efficient assign-
ment of tasks to robots must be determined. Exist-
ing multirobot task allocation algorithms treat tasks
as simple, indivisible entities. However, when dealing
with complex tasks, the structure and semantics of the
tasks can be exploited to produce more efficient team
plans by giving individual robots the ability to come
up with new ways to perform a task, or by allowing
multiple robots to cooperate by sharing the subcom-
ponents of a task, or both. In this paper we detail a
method for efficiently allocating a set of complex tasks
to a robot team. The advantages of explicitly modeling
complex tasks during the allocation process is demon-
strated by a comparison of our approach with existing
task allocation allocation algorithms in an area recon-
naissance scenario. An implementation on a team of
outdoor robots further validates our approach.

1 INTRODUCTION

Multirobot systems are becoming increasingly
more capable and the types of achievable applications
for teams of robots are becoming progressively more
complex. Many approaches to multirobot coordination
rely on a mechanism for task allocation to determine
an efficient assignment of tasks to robots; however, ex-
isting techniques do not fully consider the complexity
of the tasks to be allocated. For the most part, tasks
are assumed to be atomic units that can be performed
by one or more robots on the team. In practice, tasks
are usually introduced to a system by a system or a
central planner, and the task allocation algorithm then
considers the task only in terms of the level of descrip-
tion provided by either of these sources. However, by
reasoning about the task complexity the team can po-
tentially perform the mission more efficiently.

In this paper, we address the problem of allocating
complex tasks to a team of autonomous robots. Com-
plex tasks are tasks that may have many potential so-

lution strategies; finding a plan to achieve a complex
task often involves solving an NP-hard problem. In
contrast, simple tasks can be executed by a robot in
a straightforward, prescriptive manner. In particular,
we focus here on complex tasks that can be decom-
posed into multiple inter-related subtasks (which may
also be complex). This class of tasks is natural for
describing many application domains, including recon-
naissance, automated construction, search and rescue,
hazardous waste cleanup, and planetary exploration.

When decomposing a complex task, the most ap-
propriate choice of subtasks in the decomposition is
highly dependent on which robot(s) are executing the
tasks. While it is possible to first decompose each com-
plex task and then assign the resulting simple tasks,
this approach can result in highly suboptimal solu-
tions. One must recognize that there are essentially
two problems to solve: what needs to be done? (task
decomposition); and who is doing what? (task alloca-
tion). In terms of finding the most efficient solution,
it is not possible to determine how best to allocate the
tasks if it is not known how they will be decomposed,
and it is not possible to determine how best to decom-
pose the tasks if it is not known to whom they will
be assigned. In this paper, we address these problems
by proposing a distributed algorithm in which robots
simultaneously and continuously allocate and decom-
pose complex tasks. Our solution uses a market-based
approach in which both efficient task allocations and
efficient task decompositions are favored.

In the next section, we review existing approaches
to task allocation that can be applied to complex task
domains. We then outline our approach in section 3.
Results follow from an area reconnaissance scenario
implemented both in simulation and on a team of out-
door robots.

2 RELATED WORK

The majority of multirobot systems that utilize
an explicit task allocation mechanism assume either
that a static set of tasks is given to the system as in-

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
00 DEC 2004

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Market-Based Complex Task Allocation For Multirobot Teams

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
The Robotics Institute, Carnegie Mellon University Pittsburgh, PA, 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM001736, Proceedings for the Army Science Conference (24th) Held on 29 November - 2
December 2005 in Orlando, Florida. , The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

put (Botelho and Alami, 1999; Dias, 2004; Gerkey and
Matarić, 2002; Golfarelli et al., 1997), or that tasks
arrive dynamically, either from external (Dias, 2004;
Gerkey and Matarić, 2002) or internal (Simmons et al.,
2000a; Zlot et al., 2002) sources. In any case, such
approaches search for an efficient assignment of the
current task set to robots, assuming that all tasks are
indivisible. When this type of mechanism is applied
to complex tasks, a robot assigned a task can decom-
pose it and then execute the resulting simple tasks
(e.g. (Botelho and Alami, 1999)). In reality, however,
it may be beneficial to allocate subcomponents of these
tasks to multiple robots, and generally the preferred
task decomposition will depend on the subtask assign-
ments. Therefore, treating tasks as atomic entities is
not always prudent.

A common alternative among systems that explic-
itly handle complex tasks is a two-stage approach: first
decompose all tasks and then distribute the result-
ing set of subtasks (Aylett and Barnes, 1998; Caloud
et al., 1990; Simmons et al., 2000b). The main draw-
back of this approach is that task decomposition is
performed without knowledge of the eventual task al-
location; therefore the cost of the final plan cannot
be fully considered. Since there is no backtracking,
costly mistakes in the central decompositions cannot
be rectified. In some instances, the central plan is left
intentionally vague, which allows for a limited amount
of flexibility in modifying it later. For example, in
GOFER (Caloud et al., 1990), the central planner pro-
duces a general plan structure for which individual
robots can later instantiate some variables; while in
the “playbook” system of Simmons et al. (Simmons
et al., 2000b), the planner relies on a central executive
to both allocate tasks and to fill in some plan details.

The M+ cooperative task achievement
scheme (Botelho and Alami, 2000) allows some
reallocation of subcomponents of complex tasks.
Tasks are first allocated using the M+ task allocation
mechanism (Botelho and Alami, 1999), which uses
a bidding protocol to distribute predefined abstract
tasks among the team. Each robot locally decom-
poses its tasks into actions (which can be viewed as
primitive subtasks). The task achievement scheme
allows the elimination or transfer of actions to remove
some inefficiencies or redundancies in the global plan.
While this additional step can potentially improve
the solution quality to some degree, the initial task
allocation does not consider how the actions are to be
shared among the robots, nor does the decomposition
step consider the eventual allocation of its resulting
actions. Additionally, the task achievement scheme
does not explicitly model the costs of the actions that
get reassigned or canceled.

3 APPROACH

Our approach to the complex task allocation prob-
lem builds upon the success of existing market-based
multirobot coordination techniques (e.g. (Botelho and
Alami, 1999; Dias, 2004; Gerkey and Matarić, 2002;
Golfarelli et al., 1997; Simmons et al., 2000a; Zlot
et al., 2002)). By generalizing the definition of a
task and developing appropriate mechanisms to handle
these new task descriptions, we create a marketplace
capable of distributing complex tasks among a robot
team in an efficient manner.

3.1 Market-based Multirobot Coordination

Market-based approaches to multirobot coordina-
tion treat a team of robots as participants in a virtual
economy, where they can trade contracts for perform-
ing tasks or sharing resources in exchange for payment.
Cost and revenue functions are designed so that in-
dividuals efforts to maximize profits lead to globally
efficient solutions.

Our approach can be considered an extension of
TraderBots (Dias, 2004). In TraderBots, agents called
traders participate in a market, trading tasks via auc-
tions. When an auction is announced, participants
compute bids based on their expected profit for the
tasks on offer, and the robots that can perform the
tasks for the best price are awarded the resulting con-
tracts. Since only profitable trades occur, each auction
acts to improve the overall solution. Each RoboTrader
(a trading agent running on each robot) maintains a
schedule of tasks to which it has committed, and can
evaluate new tasks by computing the marginal costs of
adding them to its schedule. Additionally, OpTrader
agents can act on behalf of system operators, contract-
ing tasks as they are requested and monitoring the
progress of the team. Traders can take on the roles
of auctioneer and bidder dynamically, thus facilitating
peer-to-peer trades amongst the team. This implies
that tasks can be reallocated, allowing for solution
improvements over intial assignments and for adapt-
ing the task assignments as new information is ascer-
tained. Having no single auctioneer also avoids the
presence of a central agent becoming a critical point
of failure for the system.

3.2 Task Trees

To introduce complex tasks into a market frame-
work, we use a task tree representation. A task tree
is defined as a rooted set of task nodes connected by

2

reconnoitre
region

cover area
1

cover area
2

cover area 1
plan 1

cover area 1
plan 2

cover area 2
plan 1

cover area 2
plan 2

OP
1-1

OP
1-2

OP
1-3

OP
1-5

OP
1-4

OP
2-1

OP
2-2

OP
2-4

OP
2-3

abstract

primitive

Figure 1: An example AND/OR task tree for an area recon-
naissance scenario. The solid edges represent AND operators,
and the dashed lines represent OR operators. Note that for
the cover area tasks, there are two alternative decompositions
specified in the tree.

directed edges that specify parent-child relationships
between the tasks. Each successive level of the tree
represents a further refinement of a complex task; the
root is the most abstract description, and the lowest
level contains primitive tasks that can be executed by
a robot or another agent in the system.

The way in which subtasks are related to their
parents can vary depending on the application and the
degree of coordination desired. In this paper, we look
specifically at a subclass of complex tasks: loosely-
coupled tasks related through AND and OR logical
operators; to satisfy an AND-labeled task, all of its
subtasks must be executed, while an OR task is sat-
isfied when at least one of its subtasks is executed.
The AND/OR tree shown in figure 1 represents a task
decomposition for an area reconnaissance mission.

3.3 Complex Task Markets

In order to effectively incorporate complex tasks,
multirobot task markets can be extended to include
task tree auctions. Instead of trading contracts for sim-
ple tasks, trees of tasks are offered in auctions. Partic-
ipants can bid on any combination of nodes in the tree,
and the auctioneer can choose to award several nodes
from the same tree to multiple winning bidders. The
winners of the auction are responsible to the seller and
must ensure that the tasks are completed before receiv-
ing payment (either by executing the task themselves,
or by subcontracting parts of the task to other team-
mates in future negotiations). Because bids can be on
tasks at multiple levels of abstraction, task tree mar-
kets have the flexibility to allocate tasks at whichever
granularity of abstraction is most appropriate.

One benefit of a task tree market is that task
tree structures allow robots to express their valua-
tions for both tasks and plans. Since robots have

different states, information, resources and capabili-
ties, they may prefer different decompositions for the
same task. The calculation of these preferences is a
recursive process. In the base case, primitive tasks are
handled in much the same way as in simple task mar-
kets: bids are based on the expected marginal cost of
the task, and awards can be immediately inserted into
the schedule of the winner. Abstract tasks are eval-
uated in two ways. First, the cost of performing the
task as offered (i.e. the auctioneer’s decomposition) is
considered. This is essentially the cost of performing
a set of the descendant primitive tasks; the chosen set
depends on the connectives (e.g. the logical operators)
present in the subtree. In the second step, the bidder
can try to find a better plan for the task: it computes
its own decomposition of the task, and, if the resulting
plan is of lower cost, it uses this cost for its bid. If the
bidder is awarded this task, it can insert the primitive
subtasks of whichever plan was more beneficial into its
schedule. It may later choose to subcontract some or
all of the new plan in future auctions.

3.4 Bidding and Auction Clearing

Auction clearing is the process of determining to
which bidders to award which tasks. In a task tree auc-
tion, the goal of the auctioneer is to find the allocation
which maximizes the auctioneer’s profit (minimizing
team cost). The winning allocation must satisfy sev-
eral constraints. Firstly, the tree structure defines the
tasks that can be awarded in combination. For exam-
ple, a task node should not be awarded to a bidder in
a task tree auction if one of its ancestor nodes has al-
ready been assigned. Second, due to the dependency
of task costs on previous assignments, only one tree
node can be awarded to each bidder.

In each auction, traders are permitted to bid on
any arbitrary set of nodes in a task tree (provided they
don’t represent tasks that are already completed or
subcontracted to another party). This gives the bid-
ders a highly expressible format in which to specify
their preferences, but creates a difficult auction clear-
ing algorithm. In a previous publication (Zlot and
Stentz, 2003), we describe a clearing algorithm for a
much simpler bidding language. In that case, partic-
ipants are allowed to bid on all nodes along a root-
to-leaf path in a task tree (a single path starts at the
root, but can branch at OR nodes), and the auction
clearing problem becomes much easier. The clearing
algorithm that solves this problem (described in algo-
rithm 1) is used as a basis for solving the much harder
clearing problems that arise when traders can bid on
all nodes of the tree.

3

Algorithm 1: Auction clearing algorithm for re-
stricted bids

Let T be a set of nodes in a tree with root R. Let
p(N), N ∈ T be the lowest price bid on each tree
node;

1 Initialize the solution by marking all leaf nodes;
2 while Np 6= R do
3 Find Nmax, the maximum depth node in T . Let

Np be the parent of Nmax, and S be the set of
children of Np;

4 if Op(Np) = AND then
5 p(S) :=

P
C∈S p(C);

6 else if Op(Np) = OR then
p(S) := minC∈Sp(C);

7 if p(Np) < p(S) then
Mark Np, unmark all descendants of Np;

else
8 p(Np) := p(S)

9 T := T − S

To clear more general auctions in which partici-
pants can bid on any nodes in the tree, two new algo-
rithms are required, depending on the context of the
auction.

RoboTrader auctions: This clearing algorithm is
used in auctions held by individual robots. The dis-
tinguishing property of these auctions is that any tree
nodes that aren’t sold remain contracted to the auc-
tioneer. That is, the auctioneer has a reserve price
for the tree (the cost to perform the tasks itself). A
rough outline of this clearing algorithm is given as al-
gorithm 2.

Algorithm 2: RoboTrader auction clearing algo-
rithm

1 while the tree is not satisfied do
2 Determine and mark the cost minimizing set of

bids that satisfy the remaining part of the tree,
using algorithm 1;

3 Sort marked nodes by profit (i.e. the difference
between the auctioneer’s reserve price and the bid
price). Retain all bids in that list until we reach
a repeat winner. Discard all remaining bids;

OpTrader auctions: This algorithm is used in auc-
tions held by the OpTrader, an agent acting on behalf
of a system operator. When a user introduces a new
complex task for the robots to accomplish, the Op-
Trader decomposes the task and holds an auction to
allocate the resulting task tree to the robots. In this
case, the agent holding the auction cannot perform the

tasks itself, therefore there is no reserve price. A sketch
of the clearing algorithm is given as algorithm 3. Note
that this algorithm does not necessarily award the en-
tire tree – if some of the tree remains unsold, further
auctions are called until the tree is satisfied by the
combination of awards.

Algorithm 3: OpTrader auction clearing algo-
rithm

1 Determine and mark the cost minimizing set of bids
that satisfy the remaining part of the tree, using al-
gorithm 1;

2 For each bidder, award the node for which it has the
highest margin of victory (i.e. the greatest difference
between the first and second price bids), if any;

4 EXPERIMENTS

We have tested our approach on an area reconnais-
sance application. In this scenario, a team of robots
is tasked with a reconnaissance mission which involves
scouting a number of specified named areas of inter-
est (NAI). To cover each NAI the robots select and
navigate to a set of observation points (OP) and view
the area with range-limited 360◦ line-of-sight sensors.
Because the NAIs may contain enemies, the robots
cannot enter them without incurring a large cost. The
mission is achieved when the robots visit a sufficient
number of OPs to cover a predefined fraction (75%) of
each area.

We use a 2.5-dimensional occupancy grid repre-
sentation of the environment, in which every cell is
marked with a height, a cost, and a benefit for viewing
it (i.e. if it is within an NAI). We use the D* path plan-
ning algorithm (Stentz, 1994) to compute navigation
costs, and we calculate area visibility from observation
points using a point-to-point inter-visibility algorithm.

4.1 Task Decomposition

To construct a task tree for a problem instance, a
mission-level reconnaissance task is decomposed into
a set of NAIs, and each NAI in turn is decomposed
into a set of OPs. An example of a task tree for an
area reconnaissance problem with two NAIs is given
in figure 1.

Mission-level decomposition: A connected
components algorithm is used to determine connected
areas within the region that have high viewing bene-
fits. Each separate area (NAI) found becomes a child
to the mission-level task, and a bounding-box repre-

4

sentation is used to describe the area coverage task.

NAI decomposition: To find the set of OPs
from which to view a given NAI, we look at potential
OPs1 and compute the expected revenue (line-of-sight
coverage of the NAI from the OP) and the expected
cost of traveling to the OP. These quantities are com-
bined as a weighted difference (revenue minus weighted
cost), and we repeatedly choose the highest scoring
OP until we have sufficient coverage of the area. By
modifying the weighting factor, we can come up with
alternative decompositions for the same area. With a
high weight, we put more emphasis on cost, and the
resulting OP set has low cost for a single robot. Us-
ing a low weight deemphasizes navigation cost and re-
sults in more spread out, but potentially less, coverage
points. These decompositions often favor team plans
– the robot performing the decomposition often con-
tracts out some of the goal points to other robots. Our
implementation computes one ‘individual’ decomposi-
tion and one ‘team’ decomposition, which are both
placed in the tree as alternative plans under an OR
node (as in figure 1). In general, if the team is hetero-
geneous, robots can come up with several alternative
plans that draw on the various capabilities of the dif-
ferent types of robots on the team. NAI tasks that
have previously sold or executed OP children can still
be decomposed and traded by considering those OPs
as being fixed in the decomposition.

4.2 Task Clustering

In addition to the mission and area decomposi-
tion steps, a clustering algorithm is also run on the
observation points and NAIs. The purpose of this al-
gorithm is to group together any sibling nodes that are
physically close together. This can improve the alloca-
tion efficiency by allowing some groups of synergistic
tasks to be sold together, thus circumventing some lo-
cal minima. With the addition of task clustering, a
task tree for an area reconnaissance mission can have
a depth of up to six levels.

4.3 Costing

The goal of the robot team is to complete the
mission while minimizing the total distance traveled.
Individually, the robots must solve instances of the
traveling salesman path problem (TSPP)2 when de-

1Because the computation required to consider a single OP is
expensive, we limit the candidate OPs to twelve per NAI, which
surround the bounding box with four OP candidates per side.

2The traveling salesman path problem is similar to the travel-
ing salesman problem, except the salesman is required to follow

ciding in which order to visit observation points.
Robots frequently encounter TSPP-related optimiza-
tion and cost estimation problems when computing re-
serve prices for auctions, when bidding, and when re-
ordering schedules after trades. For small problems (at
most twelve cities) we compute the optimal solution;
while for larger instances we run a 3

2 -approximation
algorithm (Hoogeveen, 1991), which we then improve
by a 2-opt local search. Reserve prices and bids for
tasks are computed by differencing the costs of a path
with and without the tasks under consideration.

4.4 Simulation Experiments

A series of experiments was conducted to evaluate
the effectiveness of task tree trading for the area recon-
naissance scenario, using a multirobot simulator with
a graphical display (figure 2). In each test, a num-
ber of robots and NAIs are randomly placed within a
200x200-cell grid containing multiple obstacles. The
terrain map was constructed from real-world measure-
ments by an autonomous helicopter equipped with a
downward looking scanning laser rangefinder3. The
NAIs are non-overlapping, randomly-sized rectangles
with edge lengths drawn uniformly at random in the
range of 15 to 30 grid cells.

Figure 2: Screenshot from the multirobot simulator. Here there
are four robots tasked with a reconnaissance mission requiring
the coverage of five areas. Also pictured are the paths that the
robots plan to traverse to visit the OPs.

Our experiments examine the benefit of explic-
itly handling complex task allocation by comparing
task tree auctions against “single-level” task auctions,
meant to represent existing task allocation algorithms
that model tasks as atomic entities and do not consider
the structure or complexity of the tasks. In addition
to task tree auctions, we look at three particular types
of single-level allocation mechanisms.

a path, rather than a tour (i.e. the salesman does not have to
return to the starting city).

3The data is courtesy of Omead Amidi and Ryan Miller.

5

Goal point-level allocation: Here the mission
is initially decomposed by the OpTrader into a set of
observation points. All auctions that follow are for
tasks in this set of goal points only (i.e. there is no
notion of the NAIs; no further decompositions occur).

Area-level allocation: The OpTrader decom-
poses the mission into a list of NAIs. Subsequent auc-
tions are for these area coverage tasks only. When a
RoboTrader bids on a task, it can compute its own
decomposition but it can never reallocate any of the
subtasks (thus there can be no cooperation between
robots in covering a single NAI).

Mission-level allocation: The mission is not
pre-decomposed: the auctions are for the mission task
as a whole. RoboTraders can decompose the mission
locally, but cannot reallocate subcomponents. This
means that in any solution only one robot is executing
the mission.

Task tree allocation: Tasks are represented as
task trees, and are traded at multiple levels of abstrac-
tion. Task tree auctions are expected to outperform
area (and mission-level) auctions because the use of
task tree auctions makes it possible for traders to share
coverage of NAIs when such an allocation is beneficial.
In addition, task tree auctions are expected to be su-
perior to goal point auctions because they permit the
traders to redecompose the complex tasks and come
up with more efficient plans.

There are generally two types of task allocation
mechanisms: centralized, and distributed. In central-
ized allocation, a single agent is responsible for assign-
ing the tasks to the robots. With distributed alloca-
tion algorithms, the robots have an initial allocation
(possibly coming from an centralized allocation phase)
and can then reallocate tasks by having peer-to-peer
negotiations. In our experiments we consider both of
these settings.

Centralized auctions: The OpTrader holds a
series of auctions to allocate the tasks to the robots. In
the case of task tree auctions, algorithm 3 of section 3.4
is used. For single-level auctions, we use a greedy
clearing algorithm, similar to one used in TraderBots:
the robots send bids for all available tasks to the Op-
Trader ; the OpTrader then greedily selects the best
bids and awards those tasks to the robots (one task
per robot); repeat until all tasks have been awarded.

Distributed (peer-to-peer) auctions: The ini-
tial allocation is obtained via a centralized auction (as
described above). The RoboTraders then hold further
auctions in rounds, in which each trader, sequentially

and in random order, calls and clears one auction.
Rounds are held repeatedly until a stable solution is
reached (i.e. no more awards are being given out). For
peer-to-peer task tree auctions, each robot randomly
chooses one of the trees to which it has committed for
auction, and algorithm 2 is used to clear. For single-
level auctions, each RoboTrader offers all of its avail-
able tasks; the other robots submit bids and a single
award is given out for the one task that results in the
greatest profit.

The majority of existing multirobot task alloca-
tion algorithms fall roughly into the single-level cen-
tralized allocation category (Botelho and Alami, 1999;
Caloud et al., 1990; Gerkey and Matarić, 2002; Sim-
mons et al., 2000a; Simmons et al., 2000b), although
a small number of approaches use some form of single-
level distributed allocation (e.g. (Golfarelli et al., 1997;
Sandholm, 1993)). TraderBots (Dias, 2004), and, to
some extent, M+ (Botelho and Alami, 1999; Botelho
and Alami, 2000) include both single-level centralized
and single-level distributed task allocation.

4.5 Results

For each type of allocation mechanism (central-
ized, distributed) we ran the three single-level alloca-
tion algorithms and compared the solutions with that
produced by the task tree auction mechanism. To de-
termine how the algorithms are affected by problem
complexity, in a first set of experiments we vary the
number of areas (from 1 to 10), and in a second set we
vary the number of robots (between 2 and 10).

The quality of a solution is quantified as the to-
tal distance traveled by the team. In order to evalu-
ate each single-level approach for a given problem in-
stance, we look at the ratio of the solution cost of that
approach to the task tree solution cost (i.e. a result
greater than one indicates that the task tree solution
was superior). Results are shown in figures 3-6. In the
plots, each data point is averaged over forty trials, and
95% confidence intervals are displayed as error bars.

From the results in figures 3-6, we can see that
the task tree allocation mechanism outperforms all of
the single-level task allocation algorithms. Further-
more, in most cases, adding peer-to-peer auctions fol-
lowing the centralized auctions results in even greater
improvement of the task tree algorithm over the oth-
ers. Having the flexibility both to replan and to coop-
erate on complex tasks gives the task tree algorithm
an advantage over all of the single-level approaches.

As expected, in the peer-to-peer allocation sce-

6

1 2 3 4 5 6 7 8 9 10

1

1.2

1.4

1.6

1.8

2

2.2

number of areas

ra
tio

 o
f s

ol
ut

io
n

qu
al

ity
 (x

 /
ta

sk
 tr

ee
)

Central Auctions

Goal point−level auctions
Area−level auctions
Mission−level auctions
Task tree auctions

Figure 3: A comparison of solution quality of task tree auctions
vs. single-level auctions varying the number of areas. The num-
ber of robots is held fixed at five. All auctions are centralized
(OpTrader) auctions.

2 3 4 5 6 7 8 9 10

1

1.2

1.4

1.6

1.8

2

2.2

number of robots

ra
tio

 o
f s

ol
ut

io
n

qu
al

ity
 (x

 /
ta

sk
 tr

ee
)

Central Auctions

Goal point−level auctions
Area−level auctions
Mission−level auctions
Task tree auctions

Figure 4: A comparison of solution quality of task tree auctions
vs. single-level auctions varying the number of robots. The num-
ber of areas is held fixed at five. All auctions are centralized
(OpTrader) auctions.

narios, the mission-level allocation scheme produces
the worst results. This is due to the fact that the
mission-level algorithm assigns the entire mission to
one robot, and does not take advantage of the pres-
ence of multiple robots. Perhaps surprisingly, in the
centralized auctions, mission-level allocation is often
better than allocations at other levels; another gen-
eral trend in the centralized algorithm results, is that
area-level allocations always perform better than goal
point-level allocations. Both of these effects demon-
strate a weakness of greedy single-task allocation al-
gorithms that are typically used in other systems –
that is, because each robot is awarded one task in
every auction round (excepting the last), bad allo-
cations occur when some of those assignments would
have been better-suited for other robots. This is more
pronounced when there are more tasks to assign, as is
the case with the more primitive-level allocations. As
evidenced in figures 5 and 6, peer-to-peer reallocations
(as used in TraderBots) tend to repair many of these
bad allocations.

1 2 3 4 5 6 7 8 9 10

1

1.2

1.4

1.6

1.8

2

2.2

number of areas

ra
tio

 o
f s

ol
ut

io
n

qu
al

ity
 (x

 /
ta

sk
 tr

ee
)

Central Auctions followed by P2P Auctions

Goal point−level auctions
Area−level auctions
Mission−level auctions
Task tree auctions

Figure 5: A comparison of solution quality of task tree auctions
vs. single-level auctions varying the number of areas. The num-
ber of robots is held fixed at five. Centralized (OpTrader) auc-
tions are followed by reallocation through peer-to-peer (Robo-
Trader) auctions.

2 3 4 5 6 7 8 9 10

1

1.2

1.4

1.6

1.8

2

2.2

number of robots

ra
tio

 o
f s

ol
ut

io
n

qu
al

ity
 (x

 /
ta

sk
 tr

ee
)

Central Auctions followed by P2P Auctions

Goal point−level auctions
Area−level auctions
Mission−level auctions
Task tree auctions

Figure 6: A comparison of solution quality of task tree auctions
vs. single-level auctions varying the number of robots. The num-
ber of areas is held fixed at five. Centralized (OpTrader) auc-
tions are followed by reallocation through peer-to-peer (Robo-
Trader) auctions.

4.6 Robot experiments

An implementation on a robot platform was also
tested on a team of autonomous E-Gators. The E-
Gators are outdoor electric utility vehicles manufac-
tured by John Deere, which we fitted with comput-
ers and sensors including a tilting laser range scan-
ner, GPS, and gyroscopes. The software architecture
is similar to one we have used on a team of Pioneer
robots (Dias et al., 2004), and consists of a RoboTrader
process that communicates with lower-level processes
responsible for executing tasks, robot control, inter-
robot communictions, and data management and map-
ping. Two modified E-Gators are shown in figure 7.

Figure 8 is a map created by a two E-Gator team
tasked with an area reconnaissance mission consisting
of three NAIs. The experiments are carried out on a
grassy field with some sparse obstacles, such as trees

7

Figure 7: The autonomous E-Gator platform.

and trash bins. The robots initially acquire tasks by
task tree-trading with the OpTrader, and subsequently
hold peer-to-peer task tree auctions with one another.
In the final allocation, one robot handles two NAIs
and the other one NAI, using their own task decom-
positions to determine a set of OPs for each area.

Figure 8: Snapshot of a map created by two E-Gators on an
area reconnaissance mission. Three NAIs are marked as lightly
shaded rectangles, and seven OPs are shown as black X’s. The
dark-shaded region is space mapped out by the laser rangefind-
ers. Robot paths are also displayed. Grid cells are 2mx2m.

5 CONCLUSIONS

In this paper, we identify a previously unexplored
problem in multirobot task allocation: that is, the al-
location of complex tasks. To address this problem,
we introduce a market-based solution that uses novel
task tree auctions. Empirical evidence from an area re-
connaissance scenario demonstrates that our approach
improves upon what we call “single-level allocation”
algorithms, the current state of the art in multirobot
task allocation. An implementation on a team of out-
door robots verifies the feasibility of our approach.

ACKNOWLEDGMENTS

This work was sponsored by the U.S. Army Re-
search Laboratory, under contract Robotics Collabora-
tive Technology Alliance (contract number DAAD19-
01-2-0012). The views and conclusions contained in this

document are those of the author and should not be inter-
preted as representing the official policies, either expressed
or implied, of the Army Research Laboratory or the U.S.
Government. The authors would like to thank Bernardine
Dias, Marc Zinck, Boris Sofman, Juan Pablo Gonzalez,
Joseph Carsten, and Herman Herman for their important
contributions in developing the robot hardware and soft-
ware, and assisting with field testing.

References

Aylett, R. and Barnes, D.: 1998, A multi-robot architecture for
planetary rovers. in Proceedings of the 5th ESA Workshop
on Advanced Space Technologies for Robotics and Automa-
tion

Botelho, S. S. C. and Alami, R.: 1999, M+: A scheme for multi-
robot cooperation through negotiated task allocation and
achievement. in Proceedings of the International Conference
on Robotics and Automation

Botelho, S. S. C. and Alami, R.: 2000, Robots that cooper-
atively enhance their plans. in Proceedings of the 5th In-
ternational Symposium on Distributed Autonomous Robotic
Systems (DARS)

Caloud, P., Choi, W., Latombe, J.-C., Pape, C. L., and Yim,
M.: 1990, Indoor automation with many mobile robots.
in Proceedings of the International Workshop on Intelligent
Robotics and Systems (IROS)

Dias, M. B.: 2004, TraderBots: A New Paradigm for Robust
and Efficient Multirobot Coordination in Dynamic Environ-
ments. Ph.D. thesis, Robotics Institute, Carnegie Mellon
University

Dias, M. B., Zlot, R., Zinck, M., Gonzalez, J. P., and Stentz,
A.: 2004, A versatile implementation of the TraderBots ap-
proach to multirobot coordination. in the 8th International
Conference on Intelligent Autonomous Systems (IAS-8)

Gerkey, B. P. and Matarić, M. J.: 2002, Sold!: Auction methods
for multi-robot control. IEEE Transactions on Robotics and
Automation Special Issue on Multi-Robot Systems 18(5)

Golfarelli, M., Maio, D., and Rizzi, S.: 1997, A Task-Swap
Negotiation Protocol Based on the Contract Net Paradigm,
Technical Report 005-97, CSITE, University of Bologna

Hoogeveen, J. A.: 1991, Analysis of christofides’ heuristic: Some
paths are more difficult than cycles. Operations Research
Letters 10

Sandholm, T.: 1993, An implementation of the contract net
protocol based on marginal cost calculations. in Proceedings
of the 12th International Workshop on Distributed Artificial
Intelligence

Simmons, R., Apfelbaum, D., Burgard, W., Fox, D., Thrun,
S., and Younes, H.: 2000a, Coordination for multi-robot
exploration and mapping. in Proceedings of the National
Conference on Artificial Intelligence

Simmons, R., Apfelbaum, D., Fox, D., Goldman, R. P., Haigh,
K. Z., Musliner, D. J., Pelican, M., and Thrun, S.: 2000b,
Coordinated deployment of multiple heterogeneous robots.
in Proceedings of the Conference on Intelligent Robotics and
Systems (IROS)

Stentz, A.: 1994, Optimal and efficient path planning for
partially-known environments. in Proceedings of the Inter-
national Conference on Robotics and Automation, Vol. 4,
IEEE

Zlot, R. and Stentz, A.: 2003, Multirobot control using task
abstraction in a market framework. in Collaborative Tech-
nology Alliances Conference

Zlot, R., Stentz, A., Dias, M. B., and Thayer, S.: 2002, Multi-
robot exploration controlled by a market economy. in Pro-
ceedings of the International Conference on Robotics and
Automation

8

